SATS Airborne Enabling Technologies

Breakout Groups

Group & topics

Facilitator

Airborne Enabling Technologies:

Ron Swanda, GAMA

- Flightpath Guidance
- Flight Deck Systems
- Communication/Navigation/Surveillance Systems
- Transportation System Analysis and Assessment
- Ron Mauri, Volpe

- Economics
- Market demand behavior
- Technology performance metrics
- Technology Integration and Flight Evaluation
- Dres Zellweger, FAA

- Flight research aircraft and experiments
- Simulation experiments and modeling
- Airspace systems
- Airspace procedures

Airborne Enabling Technologies

User/Mission Needs

Examples:

- On-demand jet taxi service
- Remote airport operations
- Future NAS infrastructure

Systems Engineering Approach

Requirements

Examples:

- Single-pilot operations
- Low-visibility operations
- Affordability, reliability

Technology Solutions

Examples:

- Flightpath guidance
- Flight-deck displays/systems
- CNS technologies

Airborne Enabling Technologies

User/Mission Needs

Examples:

- On-demand jet taxi service
- Remote airport operations
- Future NAS infrastructure

TRB Workshop Focus Areas

Systems Engineering Approach

Requirements

Examples:

- Single-pilot operations
- Low-visibility operations
- Affordability, reliability

Technology Solutions

Examples:

- Flightpath guidance
- Flight-deck displays/systems
- CNS technologies

SATS Products Create Mobility

Premise: Affordable Access to More Local Airports = Increased Mobility

5 Year Goal Demonstrate key airborne technologies for precise guided accessibility in small aircraft in near-all weather conditions to virtually any small airport in non-radar, non-towered airspace

Objectives

Higher-Volume
Operations in
Non-Radar
Airspace at NonTowered Facilities

Lower Landing
Minimums at
MinimallyEquipped
Landing Facilities

Increase Single-Pilot Crew Safety & Mission Reliability Enroute
Procedures &
Systems for
Integrated Fleet
Operations

SATS User/Mission Needs

- We cannot know with certainty who will be the future users of SATS technologies and procedures
- There will almost certainly be a variety of types of future users in differing proportions:
 - On-demand air taxi
 - Fractional ownership
 - Low-time private pilots
 - Corporate owned/operated jets
 - Regional jets
- Each type of user has different characteristics and cost drivers that lead to different appropriate technology solutions
- Therefore, for each of the four Operational Capabilities we will be exploring suites of technologies and procedures targeted to lowend as well as high-end users.

Higher-Volume Operations at Non-Towered/Non-Radar Airports

Demonstrate simultaneous operations by multiple aircraft in non-radar airspace at and around small non-towered airports in near all-weather conditions

Number of vehicles operating in "terminal area"

Current

Technologies

Stretch Goal

Impact

"One-in-one-out rule"

One Operation at a Time in Non-Radar Airspace

-Terminal Area Procedures

-Sequencing and Separation

-CNS Technologies

Up to 10 Vehicles
Safely Operating in the
"Terminal" Area Without
Radar Coverage

Reliable Access to More Destinations through Efficient Use of Underutilized Airspace

Lower Landing Minimums at Minimally Equipped Landing Facilities

Demonstrate precision guidance, at any landing facility while avoiding land acquisition, approach lighting, and groundbased instrument landing systems

Runway Protection Zone (RPZ)

Metric Ceiling and

Ceiling and Visibility

Ceiling and Visibility
Requirements
as Restrictive as
1000 Ft and 3 Miles

Current

- **Technologies**
- **Stretch Goal**

Impact

- 4D Pathway Guidance Energy Management Flight Controls
- Ceiling and Visibility
 Requirements as Low as
 0 Ft and 1/4 Mile
- More Landing Facilities
 Available More Often At
 Less Cost

Increased Single-Pilot Crew Safety and Mission Reliability

Demonstrate single-pilot safety, precision, and mission reliability, better than a "professional pilot" using conventional instruments

Metric

Total System Performance

Current

Single Instrument Pilot Using Conventional or "Steam Gauge" Instrumentation

Technologies

- Flight Controls/Systems Management
- 4D Pathway Guidance
- Displays of traffic, terrain, weather, etc.

Stretch Goal

Single-Pilot Safety Equal to 2 Airline Transport
Pilots Using
Conventional
Instrumentation

Impact

1 mm n m

Safer Small Aircraft
Operations, combined
with Greater Throughput |
in Underutilized
Airspace

En Route Procedures & Systems for Integrated Fleet Operations

Simulation and analytical assessment of concepts that integrate SATS equipped aircraft into the higher en route air traffic flows and controlled airspace

Metric
Mobility vs.
NAS Traffic Volumes

Current

Structured Airspace with "Fixed" Procedures for all, and no provisions for onboard "air traffic intelligence

Technologies

- Airspace Modeling/Sim
- Automated Flightpath Management Systems
- Interoperability with Evolving NAS

Stretch Goal

Analysis to Evaluate
Impact of Concepts that
Enable Mixed(SATS/nonSATS Equipped)
Operations

Impact

Increased Mobility
Without Sacrificing
Capacity

Breakout Group Charter

- The Airborne Enabling Technologies Breakout Group will focus predominantly on the following questions:
 - Is the single, hired-pilot, mixed-fleet (jets and props) early adopter model an appropriate initial target to guide SATS Program technology strategies, system assessment, and demonstration?
 - What else is required to prove SATS works?